경로(위상수학)

This page was last edited on 24 December 2022, at 05:33.

정의 1. 구간 구문 분석 실패 (SVG를 사용하되 미지원 시 PNG 사용 (브라우저 플러그인을 통해 MathML 활성화 가능): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle [0,1]} 에서 위상공간 구문 분석 실패 (SVG를 사용하되 미지원 시 PNG 사용 (브라우저 플러그인을 통해 MathML 활성화 가능): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle X} 로의 연속함수

구문 분석 실패 (SVG를 사용하되 미지원 시 PNG 사용 (브라우저 플러그인을 통해 MathML 활성화 가능): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle \alpha:[0,1]\to X}

경로(path)라고 한다. 이때 구문 분석 실패 (SVG를 사용하되 미지원 시 PNG 사용 (브라우저 플러그인을 통해 MathML 활성화 가능): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle p(0)} 을 시초점(initial point), 구문 분석 실패 (SVG를 사용하되 미지원 시 PNG 사용 (브라우저 플러그인을 통해 MathML 활성화 가능): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle p(1)} 을 종점(terminal point)이라 하고 시초점과 종점을 통틀어 끝점(endpoint)이라 한다. 경로의 시점과 종점이 같으면 그 경로를 루프(loop)라 하고, 공통 끝점을 바탕점(base point)이라 한다.

경로연결공간

정의 2. 위상공간 구문 분석 실패 (SVG를 사용하되 미지원 시 PNG 사용 (브라우저 플러그인을 통해 MathML 활성화 가능): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle X} 의 임의의 서로 다른 두 점 구문 분석 실패 (SVG를 사용하되 미지원 시 PNG 사용 (브라우저 플러그인을 통해 MathML 활성화 가능): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle a,b} 에 대해 시초점이 구문 분석 실패 (SVG를 사용하되 미지원 시 PNG 사용 (브라우저 플러그인을 통해 MathML 활성화 가능): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle a} 이고 종점이 구문 분석 실패 (SVG를 사용하되 미지원 시 PNG 사용 (브라우저 플러그인을 통해 MathML 활성화 가능): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle b} 인 경로가 존재하면 구문 분석 실패 (SVG를 사용하되 미지원 시 PNG 사용 (브라우저 플러그인을 통해 MathML 활성화 가능): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle X}경로연결공간이라 한다.

정리 3. 경로연결공간은 연결공간이다.

경로호모토피

두 경로 사이의 호모토피를 시각적으로 나타낸 이미지.

정의 4. 구문 분석 실패 (SVG를 사용하되 미지원 시 PNG 사용 (브라우저 플러그인을 통해 MathML 활성화 가능): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle \alpha,\beta:[0,1]\to X}구문 분석 실패 (SVG를 사용하되 미지원 시 PNG 사용 (브라우저 플러그인을 통해 MathML 활성화 가능): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle \alpha(0)=\beta(0)} 이고 구문 분석 실패 (SVG를 사용하되 미지원 시 PNG 사용 (브라우저 플러그인을 통해 MathML 활성화 가능): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle \alpha(1)=\beta(1)} 인 경로라고 하자. 이때 연속함수 구문 분석 실패 (SVG를 사용하되 미지원 시 PNG 사용 (브라우저 플러그인을 통해 MathML 활성화 가능): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle F:[0,1]\times [0,1]\to X} 가 존재해

구문 분석 실패 (SVG를 사용하되 미지원 시 PNG 사용 (브라우저 플러그인을 통해 MathML 활성화 가능): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle F(t,0)=\alpha(t),F(t,1)=\beta(t),\quad t\in I}

구문 분석 실패 (SVG를 사용하되 미지원 시 PNG 사용 (브라우저 플러그인을 통해 MathML 활성화 가능): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle F(0,s)=\alpha(0)=\beta(0),F(1,s)=\alpha(1)=\beta(1),\quad s\in I}

이면 구문 분석 실패 (SVG를 사용하되 미지원 시 PNG 사용 (브라우저 플러그인을 통해 MathML 활성화 가능): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle F}구문 분석 실패 (SVG를 사용하되 미지원 시 PNG 사용 (브라우저 플러그인을 통해 MathML 활성화 가능): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle \alpha}구문 분석 실패 (SVG를 사용하되 미지원 시 PNG 사용 (브라우저 플러그인을 통해 MathML 활성화 가능): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle \beta} 사이의 호모토피(homotopy)라고 하고, 구문 분석 실패 (SVG를 사용하되 미지원 시 PNG 사용 (브라우저 플러그인을 통해 MathML 활성화 가능): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle \alpha}구문 분석 실패 (SVG를 사용하되 미지원 시 PNG 사용 (브라우저 플러그인을 통해 MathML 활성화 가능): "https://wikimedia.org/api/rest_v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle \beta} 가 끝점에 대해 동등, 또는 호모토픽(equivalent/homotopic modulo endpoints)이라고 한다.

정리 5. 경로호모토피 관계는 동등관계이다.