2021년 6월 26일(토) 오후8시 페미위키:제6회 온라인 에디터톤이 진행됩니다.

단순함수

This page was last edited on 4 December 2017, at 09:03.

1 정의

가측집합 에서 정의된 함수 에 대해, 서로소이고 인 가측집합 실수 이 존재해

이면 단순함수(simple function)라고 한다. 단순함수를 지시함수를 이용해 다음과 같이 나타낼 수 있다.

2 예시

Example — 다음은 단순함수의 예시이다.

  • 임의의 계단함수는 단순함수이다.
  • 가측집합에서 정의된 임의의 지시함수는 단순함수이다.

3 성질

Theorem — 두 단순함수의 합과 곱은 단순함수이다.

4 단순함수의 적분

단순함수의 표준표현(canonical representation)은

와 같이 나타난다. 이때 이 아닌 서로 다른 실수이고, 이다. 이때 의 적분을

으로 정의하자. 그러면 이고 서로소인 가측집합일 때, 이면

을 얻는다.

가측집합 에 대해 이고 유계인 함수일 때, 를 상르베그 적분(upper Lebesgue integral), 를 하르베그 적분(lower Lebesgue integral)이라고 한다. 의 상르베그 적분과 하르베그 적분이 같으면 르베그 적분가능(Lebesgue integrable)하다고 한다.